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1. Introduction

Flux compactifications in string theory stabilize the moduli and presently provide the

main framework to connect strings to the real world [1, 2]. The fluxes induce a non-

trivial potential energy for the moduli. In addition, the fluxes can significantly affect the

energy spectrum of some quantum states. The precise modification of the energy of a

given quantum state depends on the particular string compactification, but there are some

general features which are part of the well known physics of particles interacting with

magnetic fields. In quantum theory, the energy of a state with electric charge e and spin

S moving in a magnetic field is given by the formula

E2 = k2
i + 2eBz

(

l +
1

2
− Sz

)

, l = 0, 1, 2, . . . , −S ≤ SZ ≤ S . (1.1)

For states with spin aligned with the magnetic fields, the energy is reduced and the state

can even become tachyonic for certain values of the magnetic field, leading to instabilities.

A natural question is whether analogous instabilities could be present in superstring

theory in spaces containing NSNS or RR magnetic fluxes turned on in some directions. In
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the context of type II string theory, there are exactly solvable models where the magnetic

field originates by Kaluza-Klein reduction from the metric or from the antisymmetric tensor

Bµν [3]. These models include gravitational back reaction effects due to the energy density

of the magnetic field, and exhibit tachyonic instabilities for magnetic fields greater than

some critical values [3 – 5].

It is possible to consider similar closed string models with magnetic field configurations

that preserve supersymmetry [6]. In this case the physical string spectrum is tachyon free.

Nevertheless, one can expect that for certain values of the magnetic field, the energy can

be significantly reduced due to a negative contribution from the gyromagnetic interaction,

so that a macroscopic string of size ≫ ls can even become light, E ∼ l−1
s . In this paper we

will show that this is indeed the case and study the analog phenomenon for Dp branes. To

this aim, we will consider a string-theory background with a RR magnetic Fp+2 flux which

is obtained by S and T-dualities from the magnetic background found in [6].

This background has two magnetic parameters B1, B2. When B1 = B2, the back-

ground preserves 1/2 of the 32 supersymmetries. We will find classical string and Dp

brane configurations becoming light for certain values of the magnetic field parameters

B1, B2. Remarkably, these solutions are BPS, despite the interaction with the magnetic

field. The solutions preserve a fraction 1/4 of the 16 supersymmetries of the background

and therefore are invariant under 4 supersymmetry transformations.

Studies of Dp brane classical solutions in flat space can be found for example in [7] and

more recently [8]. Different studies of the conditions to have supersymmetric Dp branes in

some supersymmetric compactifications with Ramond-Ramond (RR) fluxes are in [9 – 11].

The organization of this paper is as follows. In section 2.1 we review the string spectrum

in a particular flat (but globally non-trivial) background which gives rise to a magnetic

field by Kaluza-Klein reduction; we recall the supersymmetry properties of the background

and the presence of tachyons when supersymmetry is broken (the main points of this

quantum analysis are reviewed in the appendix A). In section 2.1.1 we identify BPS states

for the supersymmetric background with B1 = B2. In section 2.2 we construct a family

of classical solutions which corresponds to BPS states by solving the classical equations of

motion. In section 2.3 we show that these classical solutions indeed preserve a fraction of

supersymmetry, by using both cartesian and polar coordinates. In section 3.1 we study the

background obtained by a T-duality transformation; this background contains explicitly

a Bµν field and the metric is curved due to the back reaction produced by the magnetic

energy density. The spectrum, and in particular the BPS states, are obtained from section

2.1 by the standard T-duality rules. In section 3.2 we consider a family of classical solutions

corresponding to the BPS states by solving the classical equations in the background of

section 3.1 by using the Polyakov formalism. In section 3.3 we repeat this computation

using the Nambu-Goto formalism; this is done in preparation for the study of classical

Dp-branes solutions, whose dynamics is governed by the Dirac-Born-Infeld action. In

fact, in the case of the Dp-branes, studied in section 4, the method and the various steps

for obtaining the solutions will be seen to be essentially the same. We find a family of

BPS classical solutions, the energy spectrum being a generalization of the BPS spectrum

in the magnetic background discussed in section 3. One important feature of the result
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is the presence of light states which have macroscopic features. This result is further

discussed in section 5. Finally, in the appendix B we consider another family of classical

F-string solutions in the background of section 3 (or, equivalently, D-string solutions in the

background of section 4). These solutions, although not BPS, are nevertheless interesting

because they generalize to a non-flat background with fluxes the widely studied case of the

folded rotating string.

2. Fundamental string in magnetic backgrounds

2.1 Magnetic fields from Kaluza-Klein reduction

We shall consider a simple magnetic string model given in terms of the background [6]

ds2 = −dt2 + dx2
s + dy2 + dr2

1 + r2
1(dϕ1 + B1dy)2 + dr2

2 + r2
2(dϕ2 + B2dy)2 , (2.1)

where all other supergravity fields are trivial and s = 6, . . . , 9. This is an exact conformal

string model, since the metric is flat. It is globally non-trivial, due to the fact that y is a

periodic coordinate, y = y + 2πR.

The background preserves 1/2 of the 32 supersymmetries provided

B1 = ±B2 . (2.2)

The string model is a simple generalization of the non-supersymmetric string model with

B2 = 0 that was solved in [3]. The exact physical string spectrum is found in a similar way

and it is given by [6]

α′M2 = 2(NL + NR) + α′
(

n

R
− B1J1 − B2J2

)2

+
m2R2

α′

− 2B1Rm(J1R − J1L) − 2B2Rm(J2R − J2L) ,

NR − NL = mn ,

(2.3)

where B1 and B2 are in the interval 0 ≤ γ1,2 < 1, γ1,2 ≡ B1,2Rm. For other intervals

the spectrum is repeated periodically in the parameters γ1,2 with period 1. The angular

momentum operators for the two planes (r1, ϕ1) and (r2, ϕ2) are given by

J = JR + JL , JL,R = ±
(

lL,R +
1

2

)

+ SL,R , (2.4)

where for the sake of clarity we omitted the obvious indices 1,2. NL,R = 0, 1, 2, . . . . are

the standard excitation number operators of flat-space type II superstring theory and SL,R

are the standard Left and Right contributions to the flat-space spin operator (the main

points of the derivation are reported in the appendix A, see [3] for details). The parameters

lL,R = 0, 1, 2, . . . are orbital angular momenta (Landau numbers). The parameters m,n

represent winding and momentum in the y direction. If there are other compact coordinates

among the xs, then their winding and momentum contributions to the energy is added in

the standard way as in the flat case. The spin operators satisfy the inequalities

∣

∣S1L,R + S2L,R

∣

∣ ≤ NL,R + 1 ,
∣

∣S1L,R − S2L,R

∣

∣ ≤ NL,R + 1 . (2.5)
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One finds that M2 ≥ 0 for B1 = ±B2 (see appendix A), but The spectrum contains

tachyons in some regions of the parameter space [3, 6], if B1 6= ±B2. For example, consider

a state with the following quantum numbers:

NR = NL = 0 , S1R = −S1L = 1 , S2R = S2L = 0 ,

l1L,R = l2L,R = 0 , m = 1 , n = 0 ,
(2.6)

so that J1 = J2 = 0 , J1R − J1L = 1 , J2R − J2L = −1 and

α′M2 =
R2

α′ − 2(B1 − B2)R . (2.7)

The state becomes tachyonic for B1−B2 > R/(2α′). In the case B1 = B2, the full spectrum

is tachyon free for any B1, consistently with supersymmetry.

Another example is a state classically identical to the BPS state discussed below, see

sections 2.1.1 and 2.2. In appendix A we show that, for instance for B2 = 0, this state

can have M2 < 0 in some parameters range. For B2 = B1 (taking here both positive)

the positive zero point energy of the Landau levels in the plane 2 (a quantum effect of the

sigma model) insures that M2 ≥ 0.

Therefore the classical analysis, that would give M2 as a sum of contributions ≥
0, is not enough to guaranty the absence of tachyons, if supersymmetry is completely

broken. However, this occurs when in parameters regions where the classical result for

the mass is microscopic, that is of the order of the inverse string length or of the inverse

compactification radius.

Most of the present paper is devoted to the study of states having macroscopic features

but microscopic mass. Those are precisely the cases which could give rise to tachyonic

instabilities, if they are not protected by supersymmetry.

In [12, 13] the D brane spectra in the background (2.1) has been determined by using

the boundary state formalism, exhibiting a number of interesting features (the orientifold

spectrum was studied in [14]). In section 4, instead, we will be interested in studying

Dp branes not in (2.1), but in backgrounds containing Fp+2 fluxes, which are obtained

from (2.1) by dualities. The spectrum, and the physics in general, are clearly different in

each case, the former [12, 13] being analogous to a neutral particle (or zero-winding string)

moving in the geometry (2.1) (and on the curved-space generalization discussed in section

3), whereas the latter (section 4) involves a physics which is similar to that of a charged

particle moving in a magnetic field.

2.1.1 BPS states

In the B1 = B2 = 0 case, an important class of quantum string states are the BPS string

states with [15]

NL = 0 , NR = mn . (2.8)

Then M2 becomes a perfect square:

α′M2
BPS = 2mn + α′ n

2

R2
+

m2R2

α′ = α′
(

n

R
+

mR

α′

)2

, (2.9)
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or

MBPS =

∣

∣

∣

∣

n

R
+

mR

α′

∣

∣

∣

∣

. (2.10)

Note that mn = NR > 0. When mn < 0, there are BPS states with NR = 0, NL = −mn

for which

MBPS =

∣

∣

∣

∣

n

R
− mR

α′

∣

∣

∣

∣

=
∣

∣

∣

n

R

∣

∣

∣
+

∣

∣

∣

∣

mR

α′

∣

∣

∣

∣

. (2.11)

We now look for similar supersymmetric states in the presence of magnetic fields B1, B2.

We will restrict to the case B1 = B2 ≡ B where the background preserves 16 supersym-

metries. The state (2.8) has the energy

α′M2 = 2mn + α′ n
2

R2
+

m2R2

α′ − 2Bα′ n

R
(J1 + J2) − 2BmR(J1R + J2R − J1L − J2L)

+ α′B2(J1 + J2)
2 .

(2.12)

This becomes a perfect square if J1 + J2 = J1R + J2R − J1L − J2L, i.e.,

S1L + S2L = −1 − l1L − l2L . (2.13)

Since NL = 0, S1,2L can be zero or ±1 and |S1L + S2L| ≤ 1. This implies l1L = l2L = 0

and the following possible values:

(S1L, S2L) = (−1, 0) or (0,−1) . (2.14)

Then we get

M2
BPS =

(

n

R
+

mR

α′ − B(J1 + J2)

)2

. (2.15)

Remarkably, the mass square is a perfect square which indicates that the state is still

supersymmetric despite the presence of the magnetic fields. It is worth noting that in the

case B1 6= B2, M2 is not a perfect square. Moreover, the state can become tachyonic above

some critical magnetic field.

Assume for definiteness B > 0, m,n > 0. Taking into account the fact that mRB < 1

and (J1 + J2) ≤ NR = mn, one can see that n
R − B(J1 + J2) > 0 and therefore eq. (2.15)

can be written as

MBPS =
|m|R
α′ +

∣

∣

∣

n

R
− B(J1 + J2)

∣

∣

∣
. (2.16)

This form will be suitable for comparison with the energy of classical strings.

The effect of the magnetic field on a quantum state with spin aligned with the mag-

netic field is to reduce its energy. The maximum reduction is attained for the state with

maximum spin S1R + S2R = NR + 1 and l1,2R = 0, so that J1 + J2 = NR = nm. For this

state

MBPS =
|m|R
α′ +

∣

∣

∣

n

R
− Bmn

∣

∣

∣
. (2.17)

The minimum mass occurs when B approaches the limit of the interval, BRm → 1, where

MBPS → |m|R
α′ . (2.18)
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Assuming that R is of the same order of magnitude as α′, this implies that there are states

with very large n and small m which become light (mass of O(R/α′)) at some magnetic

field. Such states have a macroscopic mass = O(n/R) ≫ 1√
α′

in the absence of magnetic

fields.

This result can be understood from the periodicity of the spectrum: the full quantum

string spectrum at BRm → 1 is the same as the spectrum at B = 0, with some relabelling

of the states. In the coordinate system where the metric becomes Minkowski at B = 0,

a given large classical string becomes very light, E ∼ 1/ls, as BRm approaches 1. But

when BRm → 1 the metric approaches the Minkowski metric in another coordinate system

where the polar coordinate is ϕ′
1,2 = ϕ1,2 + y/mR. The energy (2.18) then corresponds to

a state with n′ = 0 and orbital angular momentum (see section 2.2).

2.2 Classical BPS solution

There is an exponential number = O
(

exp(2
√

2π
√

NR)
)

of quantum states satisfying the

condition NR = mn, NL = 0. A particular class of classical solutions representing a small

subset of these states is given by

Z1 = r1e
iϕ1 = X1 + iX2 = L1 eik1σ+iω1τ ,

Z2 = r2e
iϕ2 = X3 + iX4 = L2 eik2σ+iω2τ ,

t = κτ ,

y = mRσ + qτ .

(2.19)

where 0 ≤ σ < 2π and m, k1, k2 are integer numbers. When k1 = k2 = 1, these solutions

represent the states with maximum angular momentum having S1R + S2R = NR + 1.

In section 2.3, we will show that these solutions are indeed supersymmetric. Classically,

the condition (2.14) does not appear, since it arises due to normal ordering terms. The

classical string description applies when NR, JR ≫ 1 and S1,2L = −1 becomes negligible.

In this subsection we will reproduce the energy (2.16) of the quantum string states for

the cases of the circular BPS (“chiral”) string (2.19). The Polyakov action is given by

S = − 1

4πα′

∫

dσdτ

(

− ∂αt∂αt + ∂αy∂αy + r2
1

(

∂αϕ1 + B1∂αy
)(

∂αϕ1 + B1∂αy
)

(2.20)

+r2
2

(

∂αϕ2 + B2∂αy
)(

∂αϕ2 + B2∂αy
)

)

.

Here the indices α are contracted with the world-sheet metric hαβ = diag(−1, 1). Then

the string equations of motion are automatically satisfied provided

(ka + BamR) = ±(ωa + Baq) , a = 1, 2 , (2.21)

which follow from the ra equations of motion assuming that both L1, L2 are different from

zero.
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In addition, from the Virasoro constraints, we get the following conditions

0 = mRq +

2
∑

a=1

L2
a(ka + BamR)(ωa + Baq), (2.22)

κ2 = m2R2 + q2 +
2

∑

a=1

L2
a

(

(ka + BamR)2 + (ωa + Baq)
2

)

. (2.23)

Combining these equations, we find

κ2 = (mR ± q)2 +
2

∑

a=1

L2
a

(

(ka + BamR) ± (ωa + Baq)

)2

. (2.24)

Using (2.21), this gives

κ2 = (mR ± q)2 , (2.25)

where the plus sign holds for the solution with (ka + BamR) = −(ωa + Baq) (the “Right”

circular string) whereas the minus sign holds for the solution with (ka+BamR) = (ωa+Baq)

(the “Left” circular string).

Now we would like to express the energy in terms of the physical conserved quantum

numbers J1, J2 and m,n. We have

E =

∫ 2π

0
dσ

δS

δ(∂τ t)
= − 1

α′ κ ,

Ja =

∫ 2π

0
dσ

δS

δ(∂τ ϕa)
=

L2
a

α′ (ωa + Baq) ,

n

R
=

∫ 2π

0
dσ

δS

δ(∂τ y)
=

1

α′

(

q + L2
1B1(ω1 + B1q) + L2

2B2(ω2 + B2q)

)

.

(2.26)

Using (2.25) we find

E =
|m|R
α′ +

∣

∣

∣

n

R
− B1J1 − B2J2

∣

∣

∣
, (2.27)

reproducing exactly the result (2.16) of the quantum string spectrum, upon setting B1 =

B2.

As mentioned in the previous subsection, for some parameters, there are states that

have macroscopic features but have microscopic energy. Take for instance a string in the

plane 1 that is L2 = J2 = 0 with m = 1, n large and mRB1 = 1 − 1/n, m,n > 0 (inside

the periodicity interval). Choosing k1 = −1 and using (2.21) and (2.26) we get J1 = mn

and

E =
mR

α′ +
n

R

∣

∣1 − B1mR
∣

∣ =
mR

α′ +
1

R
. (2.28)

The energy is microscopic for R ∼
√

α′ but the string is large in the non compact space:

from (2.26) one finds

L2
1 =

α′∣
∣J1

∣

∣

∣

∣k1 + mRB1

∣

∣

=
J2

1 α′
∣

∣(mn − mRB1J1)
∣

∣

(2.29)
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which gives L2
1 = mn2α′ ≫ α′ for this state. In a coordinate system ϕ′

1 = ϕ1 + y/mR

the string state that has energy (2.28) corresponds to a small string with orbital angular

momentum in a large orbit.

More generally, for any BPS state one can choose coordinates ϕ′
1 = ϕ1 − k1y/mR

so that B′
1 = B1 + k1/(Rm) and the new classical solution is represented by the ansatz

ϕ′
1 = ω′

1τ , therefore k′
1 = 0, with the same J ′

1 = J1, m′ = m and zero momentum along y,

i.e. n′ = 0. It represents a string extended only in the compact dimension y, and looking

like a particle on a large cyclotron orbit with radius L1 in the non-compact space. In this

solution, instead of a large size we get a large radius of the orbit. This is in agreement

with the periodicity of the spectrum mentioned in section 2.1.1.

Later we will be interested in the case of Dp branes in a background with a RR Fp+2

flux where the full quantum spectrum is not known and it is not clear whether the spectrum

can have any periodicity.

2.3 Supersymmetry

In this section we will prove that the circular strings (2.19) with B1 = B2 preserve a

fraction 1/4 of the 16 supersymmetries of the background (2.1).

As shown in [6], the background with B1 = B2 preserves 16 supersymmetries satisfying

the condition

(1 − Γ1234)ε = 0 , (2.30)

where Γ1234 = Γ1Γ2Γ3Γ4 and Γµ are the ten-dimensional Dirac matrices, {Γµ, Γν} = 2gµν .

As we will see below, Γ1234 = γ1234 where γµ are the Minkowski space Dirac matrices,

{γµ, γν} = 2ηµν .

In type IIA theory, for the circular string (2.19) with winding and momentum we will

find in addition two conditions:

γ05ε = ∓ε , γ05γ11ε = −ε . (2.31)

The minus or plus sign arise for the Right or Left circular string (they are related to

the signs in κ2 = (mR ± q)). From these conditions we conclude that the circular string

of section 2.2 preserves 1/4 supersymmetries of the background, leaving four unbroken

supersymmetries. The reduction of 1/4 is due to the presence of two charges, winding

(fundamental string charge) and momentum (the “wave”).

Remarkably, the conditions (2.31) are the same conditions that one obtains in the

B1 = B2 = 0 case, so the interaction with the magnetic background does not break

any additional supersymmetry. There is only a reduction by a factor 1/2 because the

background B1 = B2 itself preserves 1/2 of the 32 supersymmetries of the type IIA theory.

1. A classical string solution is supersymmetric if there exist covariantly constant (Killing)

spinors ε such that [16, 17]

Γε = ε , (2.32)

where Γ is the κ-symmetry matrix [18], which in the type IIA theory is given by

Γ =
1

√

− detGαβ

ẊµX ′νΓµνγ11 , Γµν =
1

2
[Γµ, Γν ] , (2.33)
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and Gαβ = ∂αXµ∂βXνgµν . We begin by using Cartesian coordinates. The matrices Γµ

must satisfy the Dirac algebra {Γµ, Γν} = 2gµν for the metric (2.1), which in Cartesian

coordinates becomes,

ds2 = −dt2 + dx2
s +

(

1 + B2
1(x2

1 + x2
2) + B2

2(x2
3 + x2

4)
)

dx2
5 + dx2

1 + dx2
2 + dx2

3 + dx2
4

+ 2B1x1dx2dx5 − 2B1x2dx1dx5 + 2B2x3dx4dx5 − 2B2x4dx3dx5 ,

(2.34)

where i = 6, . . . , 9. The Dirac matrices are given by

Γµ = γµ , µ 6= 5 ,

Γ5 = γ5 + B1

(

x1γ2 − x2γ1

)

+ B2

(

x3γ4 − x4γ3

)

.
(2.35)

Consider the solution (2.19) (t ≡ X0, y ≡ X5)

X0 = κτ , X5 = mRσ + qτ ,

X1 = L1 cos(k1σ + ω1τ) , X2 = L1 sin(k1σ + ω1τ) ,

X3 = L2 cos(k2σ + ω2τ) , X4 = L2 sin(k2σ + ω2τ) .

(2.36)

We now consider eq. (2.33). Making use of the results of the previous subsection 2.2,

the determinant of the induced metric can be written as

√

− det Gαβ = m2R2 +

2
∑

a=1

L2
a

(

ka + mRBa

)2
. (2.37)

and

ẊµX ′νΓµν = −κk1x2Γ01 + κk1x1Γ02 − κk2x4Γ03 + κk2x3Γ04 + κmRΓ05

+
(

x1Γ25 − x2Γ15

)(

ω1mR − k1q
)

+
(

x3Γ45 − x4Γ35

)(

ω2mR − k2q
)

.

= κmRγ05 +
2

∑

a=1

x2a−1

{

κ(ka + mRBa)γ0 2a + (ωamR − kaq)γ2a 5

}

−
2

∑

a=1

x2a

{

κ(ka + mRBa)γ0 2a−1 + (ωamR − kaq)γ2a−1 5

}

.

(2.38)

Hence, the supersymmetry condition (2.33) becomes

(

Aγ05 −
2

∑

a=1

ǫijx2a−i

{

Paγ0 2a−j + Qaγ2a−j 5

}

)

γ11ε = ε , i, j = 0, 1 , (2.39)

where ǫij is the complete antisymmetric Levi-Civita symbol, with ǫ01 = 1 and

A =
κmR

√

− detGαβ

, Pa =
κ(ka + mRBa)
√

− det Gαβ

, Qa =
ωamR − kaq
√

− detGαβ

. (2.40)

If we chose a constant spinor, ε = ε0, eq. (2.39) implies

Aγ05γ11ε0 = ε0 , (2.41)

(Paγ0b + Qaγb5)γ11ε0 = 0 , a = 1, 2 , b = 1, . . . , 4 . (2.42)
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The first equation will leave half of the supersymmetries of the background if, and only

if, A = ±1. Multiplying the second condition by γb5 from the left we end up with

(Paγ05 − Qa)γ11ε0 = 0 , (2.43)

which requires Pa = ±Qa. The classical string solution must therefore satisfy the conditions

κmR = m2R2 +

2
∑

a=1

L2
a

(

ka + BamR
)2

,

κ(ka + mRBa) = ±(ωamR − kaq) , a = 1, 2 .

(2.44)

From the constraints (2.21) and (2.24) one can easily see that these conditions are indeed

satisfied. Thus we have two conditions on the Killing spinors:

γ05ε0 = ∓ε0 , γ05γ11ε0 = −ε0 , (2.45)

as anticipated above, showing that the classical string solution preserves 1/4 of the 16

supersymmetries of the B1 = B2 background. Note that conditions (2.44) are also satisfied

if the string rotates only on one plane, i.e. L2 = 0, ω2 = k2 = 0.

2. It is instructive to repeat the previous derivation in polar coordinates. For simplicity,

here we will consider a string rotating only in the plane 12,

t = κτ , r1 = r0 , ϕ1 = ωτ + kσ , y = qτ + mRσ , (2.46)

and the remaining coordinates equal to zero.

The relevant Γ matrices are found to be

Γ0 = γ0 , Γϕ = r0γ1 , Γy = γ5 + r0Bγ1 , (2.47)

in fact {Γϕ,Γϕ} = 2r2
0 , {Γϕ,Γy} = 2r2

0B, {Γy,Γy} = 2(1 + r2
0B

2).

We get the condition

(

r0P1γ0γ1 + Aγ0γ5 + r0Q1γ1γ5

)

γ11ε = ε , (2.48)

where P1, Q1, A were given in (2.40), (2.37), now with (L1, L2) = (r0, 0). This leads to the

same conditions (2.45) as in the previous derivation.

3. Magnetic field from Kaluza-Klein reduction from Bµν

3.1 The quantum string spectrum

The model is obtained by a T-dual transformation in the y direction from the previous

model (2.1). We recall the standard rules of T-duality [19]:

g′yy = g−1
yy , e2φ′

=
e2φ

gyy
, B′

yµ =
gyµ

gyy
, g′yµ =

Byµ

gyy
. (3.1)
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We get (dropping “primes”)

ds2 = −dt2 + dx2
s + dr2

1 + dr2
2 + r2

1dϕ2
1 + r2

2dϕ2
2 + Λ−1

(

dy2 −
(

B1r
2
1dϕ1 + B2r

2
2dϕ2

)2
)

,

e2(φ−φ0) = Λ−1 , B2 = Λ−1(B1r
2
1dϕ1 + B2r

2
2dϕ2) ∧ dy ,

Λ = 1 + B2
1r2

1 + B2
2r2

2 .

(3.2)

It represents an exact solution of string theory to all α′ orders (being related by T-duality

to a flat spacetime).

The string spectrum is obtained from the spectrum of the previous model by exchang-

ing m and n and R → α′/R. Thus

α′M2 = 2(NL + NR) + α′
(

mR

α′ − B1J1 − B2J2

)2

+
n2

R2

− 2α′B1
n

R
(J1R − J1L) − 2α′B2

n

R
(J2R − J2L) ,

NR − NL = mn .

(3.3)

Now the spectrum is periodic in the parameters γ1,2 ≡ α′B1,2
n
R with period 1.

The state dual to (2.6) has zero winding m = 0 and n = 1 and becomes tachyonic for

B1 − B2 > 1/(2R). Note that this is a Kaluza-Klein state of the supergravity multiplet.

This tachyon was studied in [4 – 6].

Consider the supersymmetric model B1 = B2 ≡ B. The BPS states have similar

quantum numbers as in the previous T-dual case:

NL = 0 , NR = mn , (S1L, S2L) = (−1, 0) or (0,−1) , (3.4)

and mass given by (cf. eq. (2.16))

MBPS =
∣

∣

∣

n

R

∣

∣

∣
+

∣

∣

∣

∣

mR

α′ − B(J1 + J2)

∣

∣

∣

∣

. (3.5)

B is now restricted to be in the interval 0 < α′B n
R < 1, outside which the spectrum is

repeated periodically. For the states with maximum spin S1R +S2R = NR +1 and l1,2R = 0

we get

MBPS =
∣

∣

∣

n

R

∣

∣

∣
+

∣

∣

∣

∣

mR

α′ − Bnm

∣

∣

∣

∣

, (3.6)

The minimum mass is achieved for α′ n
RB → 1, where the mass becomes

MBPS →
∣

∣

∣

n

R

∣

∣

∣
. (3.7)

The macroscopic strings becoming light are now strings with large m and small n. We will

see that their size is much greater than the string length
√

α′.
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3.2 Classical solution for the BPS string using Polyakov formalism

We consider a string rotating on one plane 12 only, and set r2 = ϕ2 = 0. The Polyakov

action becomes

S =
1

2π

∫

dτdσ L , (3.8)

with

L =
1

2α′

(

−ṫ2+ṙ2
1−r′1

2
+

1

1 + B2
1r2

1

(

r2
1(ϕ̇

2
1−ϕ′

1
2
)+ẏ2−y′

2
)

+
2B1r

2
1

1+B2
1r2

1

(

ϕ̇1y
′ − ϕ′

1ẏ

))

,

(3.9)

where ẋ ≡ ∂x
∂τ and x′ ≡ ∂x

∂σ .

The ansatz for the circular string is:

ṫ = κ , ṙ1 = r′1 = 0 → r1 = r0 , ϕ̇1 = ω , ϕ′
1 = k , ẏ = q , y′ = mR . (3.10)

The equation of motion for ϕ1, y are automatically satisfied and the equation for r1 gives

∂L

∂r2
1

∣

∣

∣

∣

r1=r0

= 0 → (ω + B1mR)2 = (k + B1q)
2 . (3.11)

The conserved (quantized) momenta are

α′J1 =
∂L

∂ω
=

r2
0

1 + B2
1r2

0

(ω + B1mR) ,

α′ n

R
=

∂L

∂q
= q − B1r

2
0

1 + B2
1r2

0

(k + B1q) ,

(3.12)

giving

r2
0ω = α′J1(1 + B2

1r2
0) − B1r

2
0mR ,

q = α′ n

R
(1 + B2

1r2
0) + r2

0B1k .
(3.13)

From the Virasoro constraint, we have r2
0ωk + qmR = 0, which becomes

J1k + nm = 0 , (3.14)

we get

q2 + r2
0ω

2 = m2R2

(

1 +
n2

R2

r2
0

J2
1

)

D2 , D2 ≡ 1

r2
0

[

B1

(

1 − α′B1J1

mR

)

r2
0 − α′ J1

mR

]2

,

m2R2 + r2
0k

2 = m2R2

(

1 +
n2

R2

r2
0

J2
1

)

.

(3.15)

The remaining Virasoro constraint gives the energy, which takes the form

E2 =
κ2

α′2 =
1

1 + B2
1r2

0

m2R2

α′2

(

1 +
n2

R2

r2
0

J2
1

)

(1 + D2) . (3.16)
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From the equations (3.11), (3.12) we get

J2
1

r4
0

=
1

α′2

(

k − α′B1
n

R

)2
=

n2

R2

(

mR

α′J1
− B1

)2

, (3.17)

which gives r0 in terms of the (quantized) quantum numbers and B1 (compare with (2.29)):

r2
0 =

α′∣
∣J1

∣

∣

∣

∣k1 − α′ n
RB1

∣

∣

=
J2

1
∣

∣

n
R (mR

α′ − B1J1)
∣

∣

(3.18)

Substituting this value we get

E =
∣

∣

∣

n

R

∣

∣

∣
+

∣

∣

∣

∣

mR

α′ − B1J1

∣

∣

∣

∣

. (3.19)

This reproduces exactly the energy formula (3.5) of the quantum string spectrum for J2 = 0.

3.3 Classical solution for the BPS string using Nambu-Goto formalism

Since we will be later interested in studying Dp branes, whose dynamics is governed by the

Dirac-Born-Infeld (DBI) action, it is useful to reproduce the previous result in the Nambu-

Goto formalism. We will see that the equations that we find for the Dp brane analog of the

rotating circular BPS string are a simple generalization of the treatment described below.

The Nambu-Goto Lagrangian is given by

L =
1

α′
√

− detGαβ +
1

α′Bµνǫαβ∂αXµ∂βXν , Gαβ = gµν∂αXµ∂βXν , (3.20)

where α, β = σ, τ .

We will work in the gauge Gστ = 0. By taking the same anstatz as in section 3.2 with

r1 = r0 and r2 = 0 (i.e. the string rotating in one plane one only) we get

L =
1

α′Λ

√

(κ2Λ − q2 − r2
0ω

2)(r2
0k

2 + m2R2) +
B1

α′Λ
r2
0(ωmR − qk) , (3.21)

with Λ = 1 + B2
1r2

0. The energy, angular momentum J1 in the plane r1, ϕ1 and the linear

momentum in y are obtained by

E =
∂L

∂κ
=

1

α′

√

r2
0k

2 + m2R2

Λ − U
,

J1 =
∂L

∂ω
= − r2

0ω

α′κΛ

√

r2
0k

2 + m2R2

Λ − U
+

B1r
2
0mR

α′Λ
,

n

R
=

∂L

∂q
= − q

α′κΛ

√

r2
0k

2 + m2R2

Λ − U
− B1r

2
0k

α′Λ
,

(3.22)

where

U =
q2 + r2

0ω
2

κ2
. (3.23)
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The constraint equation Gστ = 0 becomes

kJ1 + nm = 0 . (3.24)

The equations (3.22) can be combined giving

U

Λ − U
=

1

r2
0

[

B1r
2
0

(

1 − α′B1J1

mR

)

− α′J1

mR

]2

≡ D2 , (3.25)

or

U = Λ
D2

1 + D2
. (3.26)

Note that D2 is the same quantity seen in the previous subsection eq. (3.15). The energy

square of the state becomes the same expression eq. (3.16), which we now write exhibiting

the explicit r0 dependence.

E2 =
m2R2

α′2

1 + n2

R2

r2

0

J2

1

1 + B2
1r2

0

(

1 +

[

B1

r2
0

(1 − α′B1J1

mR
) − α′J1

mRr4
0

]2
)

. (3.27)

The Hamiltonian that arises after the gauge choice X0 = κτ is (after substituting for q, ω

their expressions in terms of n
R , J1 )

H
(

n/R, J1, r0

)

=
n

R

∂y

∂τ
+ J1

∂ϕ1

∂τ
− L =

n

R
q + J1ω − L . (3.28)

Due to τ -scaling invariance of the Lagrangian we have H = −E. Therefore the equation

for r0 is ∂E
∂r0

= 0 and this is seen to give the same eq. (3.17) as in the previous subsection.

Therefore

E =
∣

∣

∣

n

R

∣

∣

∣
+

∣

∣

∣

∣

mR

α′ − B1J1

∣

∣

∣

∣

. (3.29)

In this way we recover the result (3.19) found by using the Polyakov formalism.

The classical description reproduces the energy of the quantum string spectrum for

large quantum numbers also in non-supersymmetric configurations. As an example, in the

appendix we compute the classical energy of a rotating folded string.

4. Dp-branes interacting with a magnetic RR flux

We consider the S-dual background to (3.2), which is given by

ds2 = Λ
1

2

(

− dt2 + dx2
s + dr2

1 + dr2
2 + r2

1dϕ2
1 + r2

2dϕ2
2

)

,

+ Λ− 1

2

(

dy2 − (B1r
2
1dϕ1 + B2r

2
2dϕ2)

2
)

,

e2(φ−φ0) = Λ ,

A2 = e−φ0Λ−1(B1r
2
1dϕ1 + B2r

2
2dϕ2) ∧ dy .

(4.1)

where Λ = 1 + B2
1r2

1 + B2
2r2

2. This represents a solution to the classical string equations

to the leading order in α′ . This background contains a flux which couples to a D string.
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In order to obtain magnetic flux backgrounds for the Dp brane, we perform T-duality

transformations on xs coordinates. Using the usual rules (given in [20]) one finds

ds2 = Λ
1

2

(

− dt2 + dx2
s + dr2

1 + dr2
2 + r2

1dϕ2
1 + r2

2dϕ2
2

)

+ Λ− 1

2

(

dy2
1 + . . . + dy2

p − (B1r
2
1dϕ1 + B2r

2
2dϕ2)

2
)

,

e2(φ−φ0) = Λ3/2−p/2 ,

Ap+1 = e−φ0Λ−1(B1r
2
1dϕ1 + B2r

2
2dϕ2) ∧ dy1 ∧ dy2 ∧ . . . ∧ dyp .

(4.2)

Here s = p + 5, . . . , 9.

For simplicity, here we consider a Dp-brane with p ≥ 1 which rotates only on the 12

plane, lying at r2 = 0. In this case the dependence on B2 disappears. The projection of

this Dp brane on the plane 12 describes a circle with radius r1 = r0. The Dp brane also

moves and winds on a p−dimensional torus in the compact space. The compact coordinates

yi have periodicity yi ∼ yi + 2πRi, i = 1, · · · , p. It is convenient to formally describe the

trajectory in the non-compact space r1, ϕ1 in terms of another circular coordinate y0 = r0ϕ1

such that y0 ∼ y0 + 2πr0.

The Dp brane action is given by

S =
1

(2π)p

∫

dτ

p
∏

l=1

∫ 2π

0
dσl L , (4.3)

where for this (r2 = 0) Dp brane the Lagrangian L becomes

L = µpe
−(φ−φ0)

√

− detGαβ +
µB1

Λ
r1 detM , (4.4)

where

µp =
1

gsl
p+1
s

,

gs = eφ0 ,

ls =
√

α′ . (4.5)

Here α, β = 0, 1, · · · , p and

Gαβ = gµν
dXµ

dsα

dXν

dsβ
, (4.6)

with dsα = (dτ, dσ1, · · · , dσp) and

Mαβ ≡ dyβ

dsα
, (4.7)

with yβ = (y0, y1, · · · , yp). Note the dimension [B1] = [1/R].

We take the ansatz:

X0 = κτ , r1 = r0 , r2 = 0 , ϕ1 = ωτ + kiσi , yi = qiτ + m̃ijσj . (4.8)

Using our compact notation, we write y0 = q0τ + m̃0jσj with q0 = r0ω and m̃0j ≡ r0kj .

Note that qα ≡ ẏα and the momenta are pyα
= ∂L

∂ẏα
.

The constants of motions are:
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• ki;

• the compact windings mij : m̃ij ≡ Rimij (for yi ∼ yi + 2πRi);

• the momenta in the compactified directions pyi
= ni

Ri
= ∂L

∂qi
;

• the angular momentum J1 = ∂L
∂ω corresponding to the “momentum” py0

= J1

r0
= ∂L

∂q0
.

Note that ki, mij , J1, ni are integer numbers.

We take the gauge

G0j = gµν
dXµ

dτ

dXµ

dσj
= 0 , j = 1, · · · , p . (4.9)

This can be rewritten as
p
∑

α=0
qαm̃αj = 0 for each j = 1, · · · , p. Since ∂ det(M)

∂qα
m̃αj = 0 for

j = 1, · · · , p and ∂
√
−det G
∂qα

∼ qα, this implies

p
∑

α=0

∂L

∂qα
m̃αj =

p
∑

α=0

pyα
m̃αj = J1kj +

p
∑

i=1

nimij = 0 , j = 1, · · · , p . (4.10)

Another consequence is that the product of the matrix M times its transpose, i.e. M ·MT ,

is block-diagonal and one gets det(M) = q
√

det(Gij) with q ≡
√

∑p
α=0 q2

α. Also, note that

G00 = κ2Λ − q2.

Therefore we can rewrite the Lagrangian in this gauge as:

L =
µp

Λ

√

(κ2Λ − q2) det(Gij) +
µpB1r0

Λ
q
√

det(Gij) . (4.11)

Consider now, for fixed Gij , the vector ~q whose components are the dynamical variables

qα = ẏα. We note that L is invariant under rotations of ~q . Therefore we can take a frame

where ~q = (q, 0, · · · , 0) getting

py ≡

√

√

√

√

p
∑

α=0

p2
yα

=
∂L

∂q
=

−q
√

κ2Λ − q2

µp

Λ

√

det(Gij) +
µpB1r0

Λ

√

det(Gij) , (4.12)

from which it follows that

q2

κ2
= Λ

D2

1 + D2
, D2 ≡

(

Λ

µp

√

(J1/r0)2 +
∑p

i=1(ni/Ri)2
√

det(Gij)
− B1r0

)2

. (4.13)

By using the relations (4.10) one verifies the following identity:

√

(J1/r0)2 + (n/R)2
√

det(Gij)
=

J1/r0

m̃
, m̃ ≡ det(m̃ij) ,

n

R
≡

√

√

√

√

p
∑

i=1

n2
i

R2
i

. (4.14)
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We fix r1 = r0 by requiring ∂H
∂r0

= 0 where H is the Hamiltonian. This Hamiltonian

describing the dynamics of the space coordinates at fixed κ is obtained by substituting for

qi, ω their expressions in terms of ni

Ri
, J1 in the general formula

H
( ni

Ri
, J1, r0

)

=

p
∑

i=1

ni

Ri

∂yi

∂τ
+ J1

∂ϕ

∂τ
− L =

∑

i

ni

Ri
qi + J1ω − L . (4.15)

Due to τ -scaling invariance of the Lagrangian we have H = −E, where the energy of the

state is

E ≡ ∂L

∂κ
= µp

√

det(Gij)

Λ − q2/κ2
= µp

√

det(Gij)(1 + D2)

Λ
(4.16)

= µpm̃

√

√

√

√

1 + n2

R2

r2

0

J2

1

1 + B2
1r2

0

(

1 +

[

B1

r2
0

(1 − B1J1

µpm̃
) − J1

µpm̃r4
0

]2)

.

In the last step we have used the definitions and the identities (4.13) and (4.14).

From now on, the calculation follows identical steps as in section 3.3. We find r0 by the

equation ∂E2

∂r2

0

= 0. This gives again

r2
0 =

J2
1

n
R |m̃µp − B1J1|

. (4.17)

Substituting this value into the above expression for E we get

E =
n

R
+

∣

∣m̃µp − B1J1

∣

∣ =

√

√

√

√

p
∑

i=1

n2
i

R2
i

+
∣

∣R1 · R2 · · ·Rp det(mij)µp − B1J1

∣

∣ . (4.18)

In terms of the tension of the Dp brane τp = µp/(2π)p and the volume of the torus T p this

becomes

E =

√

√

√

√

p
∑

i=1

n2
i

R2
i

+
∣

∣τp Vol(T p)m − B1J1

∣

∣ , (4.19)

where

m ≡ det(mij) =
1

Vol(T p)

∫

dy1 ∧ · · · ∧ dyp . (4.20)

is the winding number of the Dp brane around the T p-torus. Note that the term τp ×
Vol(T p) × m is the expected contribution to the energy of the form tension × volume ×
winding. This term is O(1/gs).

Thus we find that the energy has the same form as the energy (3.19) of the circular BPS

string (in the particular case J2 = 0). This Dp brane solution is also supersymmetric as it

is related by dualities to the circular BPS string. In the particular p = 2 and B1 = B2 = 0

case, it agrees with the energy formula for the analogous membrane BPS solution found

in [21, 22] (see eq. (2.42) in [22]).
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Let us now consider some physical implications of the energy formula. We take Ri ∼ ls.

In the absence of magnetic fields and assuming gs ≪ 1 the energy of the brane is essentially

given by the winding contribution

E ∼ 1

gsls
m ≫ 1

ls
. (4.21)

Similarly to the case of the string, we find that there are Dp branes which become light

when the magnetic flux gets to some value, B1J1 ∼ τpVol(T p)m. These are states with

large m, and with ni of order 1. The energy becomes

E ∼

√

√

√

√

p
∑

i=1

n2
i

R2
i

≪ 1

gsls
m . (4.22)

Strikingly, these Dp branes become macroscopic since r0 (and in fact the proper distance)

goes to infinity when B1 approaches τpVol(T p)m/J1 (see eq. (4.17)). In the absence of

magnetic fields they have size r0 ∼ J1√
m

ls
√

gs, which is typically small in the perturbative

regime, but it may be large by a suitable choice of quantum numbers (satisfying of course

the constraint (4.10)).

In the case of the model (2.1), the physical string spectrum is periodic in the magnetic

field parameters. A very interesting open question is whether the full quantum spectrum

of Dp brane states in the background (4.2) could also have some analogous periodicity.

5. Discussion

To summarize, we have computed the energy of Dp branes in the presence of magnetic

RR flux backgrounds and identified a family of BPS rotating Dp brane solutions which are

invariant under four supersymmetry transformations. There are some potentially interest-

ing applications. Since the solutions are BPS, the mass formula should be protected from

quantum string theory corrections and therefore it should be possible to extrapolate it to

strong coupling, where the gravitational field of the brane becomes important and these

branes could become black holes, analogous to the black holes of [23], but moving in mag-

netic fields. Also, it may be possible to construct the Dp brane supergravity solution with

the addition of the magnetic RR Fp+2 flux by starting with a Dp’ brane background, adding

magnetic parameters as in section 2 and perform several dualities, providing a model for

AdS/CFT correspondence which might exhibit some interesting effects.

We have seen that there are macroscopic string and Dp brane states which become

light for some values of the magnetic field parameters B1, B2. In general, the presence of

many light classical macroscopic states in a non-supersymmetric background could be a

sign of potential instabilities. In the non-supersymmetric case, the quantum spectrum is

known [3, 4] to contain tachyons in some range of the parameters B1, B2, R (see section 2).

Such instabilities in principle can arise both from string modes or from supergravity modes.

In the first case, like the model of section 2.1, where tachyons arise in the winding sector,

the supergravity background is classically stable, but the string theory is unstable in some
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range of the parameters. In the second case, like the model of section 3.1, the supergravity

background itself is classically unstable (which allows a study of tachyon instabilities in a

field theory setting [5]).

From the quantum spectrum (2.3) (see also appendix A), it can be seen that, when

B1 6= B2, even states with NL = 0, NR = mn can become tachyonic (when B1 = B2 the

mass squared of these states is manifestly positive definite). The energy of the correspond-

ing classical solutions never becomes imaginary because, from the Virasoro constraint, E2

is proportional to (ẊiẊj + Xi′Xj ′)gij ≥ 0 where gij is the spatial part of the metric. The

classical string may become light, but not tachyonic.

Since the presence of fluxes in string-theory backgrounds are important for moduli

stabilization, a very interesting question is whether instabilities could also arise for non-

supersymmetric flux compactification models in some range of the parameters. If this is

the case, this effect could constraint the number of stable vacua. A study in this direction

was done in [24], looking for instabilities of the supergravity background.

The reduction of the energy of a state originates due to the standard gyromagnetic

interaction. This effect is universal and it is present for any quantum state with spin that

moves in a magnetic field. In string theory, the effect can be stronger due to the existence

of states with arbitrarily large values of the spin, for which the negative gyromagnetic

coupling can be important even for weak magnetic fields (for example, there are magnetic

string models which become unstable for infinitesimal values of the magnetic field, see

section 6 in [3]). For strong magnetic fields, one needs to take into account O(B2) effects

where gravity gets into the game. Finding the full quantum spectrum in this case is in

general highly complicated, but we have seen that the energy of quantum states with large

spin can be obtained with a good accuracy by studying the classical dynamics. In non-

supersymmetric backgrounds, this may signal potential instabilities by the presence of light

states with large spin.
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A. Quantum spectrum

Let us review the main points of the string quantization in the background (2.1). We refer

to [3] for more details. The coordinate y satisfies the free equation ∂+∂−y = 0. Write

y = qτ + mRσ + y′, where y′ is single-valued and define γ1,2 = B1,2mR, taking 0 ≤ γi < 1.

Introducing complex coordinates in the planes 1, 2: Z1,2 = X1,2 + iY1,2 = r1,2e
iϕ′

1,2 with
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ϕ′
1,2 = ϕ1,2 + B1,2y, one gets Zi = ZiR(τ + σ) + ZiL(τ − σ) where

√

2

α′ZiR(s) = iai0e
iγis + i

∞
∑

k=1

ai,ke
i(k+γi)s + ai,−ke

i(−k+γi)s . (A.1)

ZiL(s) has the same expression with aik → ãik and k+γi → k−γi, and similarly Z∗
i = Xi−

iYi in terms of a∗i,k (R part) and ã∗i,k (L part). Note that ZiR,L(σ = 2π) = ei2πγiZiR,L(σ =

0).

One then introduces annihilation and creation operators by bi0 ≡
√

γi

2 ai0 , b†i0 ≡
√

γi

2 a∗i0 and

bik− ≡
√

k + γi

2
ai,k , b†ik− ≡

√

k + γi

2
a∗i,k , bik+ ≡

√

k − γi

2
a∗i,−k , b†ik+ ≡

√

k − γi

2
ai,−k ,

such that [bik±, b†jk′±] = δijδkk′ and similarly for the Left part. A similar construction holds

for the fermionic coordinates. Here we will consider as an example the NS sector. In this

case, the integer k is replaced by a half-integer number and therefore there is no fermionic

zero mode.

The angular momentum in the plane i is Ji = JiR + JiL with

JiR = −1

4

∑

k

(k + γi)(a
∗
ikaik + aika

∗
ik) + Jψ

iR

= −b†i0bi0 −
1

2
+

∑

k≥1

(b†ik+bik+ − b†ik−bik−) + Jψ
iR ,

JiL = −1

4

∑

k

(k − γi)(a
∗
ikaik + aika

∗
ik) + Jψ

iL

= b̃†i0b̃i0 +
1

2
+

∑

k≥1

(b̃†ik+b̃ik+ − b̃†ik−b̃ik−) + Jψ
iL ,

where Jψ
iR,L are the contributions of the fermionic coordinates in the plane i. Note that there

is no fermionic analog of b†i0bi0+
1
2 . The momentum in the y direction is n

R = q+B1J1+B2J2.

One sees that

∑

i

∑

k

(

k + γi

2

)2

(a∗ikaik + aika
∗
ik) + 2N ′

R = 2NR −
∑

i

2γiJiR ,

∑

i

∑

k

(

k − γi

2

)2

(ã∗ikãik + ãikã
∗
ik) + 2N ′

L = 2NL +
∑

i

2γiJiL ,

where N ′
R,L represent the contributions of the other coordinates and of the NS fermions

before normal ordering, and NR,L are the usual flat spacetime number operators including

the contribution of every coordinate and of the NS fermions: NR,L =: NR,L : −1/2. The

GSO projection implies NR,L ≥ 0. From this we get

α′M2 =
(mR)2

α′ + α′( n

R
− B1J1 − B2J2

)2
+ 2(NR + NL) −

∑

i

2γi(JiR − JiL) , (A.2)
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where JiR,L ≡ SiR,L ∓ (liR,L + 1/2) and liR = b†i0bi0, liL = b̃†i0b̃i0, representing the contri-

butions of the Landau Levels in the plane i. Note the bounds

liR,L ≥ 0 , |S1R,L ± S2R,L| ≤ NR,L + 1 . (A.3)

The bound for SiR,L can be saturated if in the plane 1 or 2 the fermionic modes 1/2+ or

1/2− are excited (and no other fermionic modes) plus possibly the modes 1+ or 1− (and

no other bosonic modes). From (A.3) one can see that

α′M2 ≥ (mR)2

α′ + α′
(

n

R
− B1J1 − B2J2

)2

+ 2(NR + NL)

(

1 −
∑

i

γi

2

)

−(γ1 − γ2)(S1R − S2R − S1L + S2L) (A.4)

Therefore M2 ≥ 0 for γ1 = γ2, i.e. when B1 = B2.

In general for B1 6= B2 there can be tachyons. In particular, consider the case B2 = 0.

Eq. (A.2) can be written as

α′M2 =
(mR)2

α′ +
α′

(mR)2
(mn − γ1(S1R + S1L))2 + 2(NR + NL)

+2γ1(l1L + l1R + 1) − 2γ1(S1R − S1L) (A.5)

From (A.3) one have |S1R,L| ≤ NR,L + 1 . Take, for example, n = 0, m = 1, R2 = α′,

NR = NL = 0, l1L = l1R = 0, S1R = 1, S1L = −1. We get

α′M2 = 1 − 2γ1 < 0 , for 1/2 < γ1 < 1 .

Another interesting tachyonic state, appearing at B1 6= B2 in a certain range of the

parameters, is a state with NL = 0. We take NR = nm, NL = 0, l1L = l1R = 0, S1R =

nm + 1, S1L = −1, S2R = 0, S2L = 0, obtaining

α′M2 =

(

mR√
α′

+

√
α′n

R
(1 − γ1)

)2

− 2(γ1 − γ2) . (A.6)

It follows that M2 can be negative only if

(B1 − B2) >
mR

2α′ .

Setting, for instance, m = 1, γ1 = 1− 1/n0, B2 = 0, R =
√

α′, one finds that M2 becomes

negative for n0 > 1 + n +
√

(n + 1)2 + n2.

Note the difference with the true BPS case which occurs for B1 = B2, where M2

in (A.6) becomes a perfect square.

B. Rotating folded string

Another class of widely studied quantum string states represents strings which are folded

and rotate in the non-compact plane r1, ϕ1. In addition, we will consider the case when it
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is wrapped in the compact dimension y with winding m ≥ 0 and zero momentum n. The

corresponding ansatz is

t = κτ , r1 = r1(σ) , ϕ1 = ωτ , y = mRσ , (B.1)

and r2 = ϕ2 = 0. We will consider this string in the model (3.2). It corresponds to a

quantum state with

NR = NL = N , J1R = J1L = N , J2R = J2L = 0 , (B.2)

which gives

α′M2 = 4N + α′
(

mR

α′ − B1J1

)2

, (B.3)

where we assume B1 > 0. We will now show that the classical energy of the solution (B.1)

reproduces this formula.

The Nambu-Goto Action is S = 1
2π

∫

dτdσL where the Lagrangian L is

L =
1

α′Λ

√

(κ2Λ − r2
1ω

2)
(

(dr1/dσ)2Λ + m2R2
)

+
B1r

2
1

α′Λ
ωmR . (B.4)

We can formally consider σ to play the role of “time” and solve for r1(σ) by using the

Hamiltonian formalism, where we define a “conjugate momentum” and the “Hamiltonian”

by

p(σ) = α′ ∂L

∂(dr1/dσ)
, H(p, r1) =

1

α′ p
dr1

dσ
− L . (B.5)

We call for short:

f ≡ κ2 + (κ2B2
1 − ω2)r2

1

1 + B2
1r2

1

, g ≡ m2R2

1 + B2
1r2

1

, A ≡ −α′ H(p, r1) . (B.6)

The important point is that A is constant. We find

p2 =
(dr1/dσ)2

(dr1/dσ)2 + g
f ,

√

fg2

(dr1/dσ)2 + g
=

√

(f − p2)g = A − B1r
2
1mR

1 + B2
1r2

1

ω ,

(B.7)

giving
(

dr1

dσ

)2

= g
fg −

(

A − B1r2

1
mR

1+B2

1
r2

1

ω
)2

(

A − B1r2

1
mR

1+B2

1
r2

1

ω
)2

. (B.8)

Therefore fg − (A − B1r2

1
mR

1+B2

1
r2

1

ω)2 ≥ 0, which is satisfied if

0 ≤ r2
1 ≤ r2

M , r2
M ≡ κ2m2R2 − A2

(mRω − AB1)2
. (B.9)

Note that (B.7) holds for arbitrary r1 and therefore it implies that

A ≥ 0 , A − B1r
2
1(mRω − AB1) ≥ 0 , (B.10)
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so that
∣

∣

∣

∣

A

mRω − AB1
− B1r

2
1

∣

∣

∣

∣

=
A − B1r

2
1(mRω − AB1)

|mRω − AB1|
. (B.11)

Some useful formulae, following from rewriting what said above, are:

p =

√

f − 1

g

(

A − B1r2
1mRω

1 + B2
1r2

1

)2

=
|mRω − AB1|

mR

√

r2
M − r2

1 , (B.12)

dr1

dσ
= ±

mR
√

r2
M − r2

1

| A
mRω−AB1

− B1r2
1|

. (B.13)

The energy of the state is

E =
1

2π

∫

dσ
∂L

∂κ

=
κ

2πα′

∫

dσ

√

(dr1/dσ)2 + g

f
(B.14)

=
κ

2πα′

∫

dσ
dr1

dσ

1

p

=
2nκ

πα′
mR

|mRω − AB1|

∫ rM

0

dr1
√

r2
M − r2

1

=
nκ

α′
mR

|mRω − AB1|
. (B.15)

Here we have used (B.13) with the + sign when r grows from 0 to rM and we have assumed

that the string is folded n times; a factor 4 appears because for n = 1 any point r1 of the

string is obtained 4 times as σ goes from 0 to 2π.

We have still to require, using (B.13) and (B.11),

2π =

∫ 2π

0
dσ =

4n

|mRω − AB1|

∫ rM

0
dr1

∣

∣

∣

∣

∣

∣

A − B1r
2
1(mRω − AB1)

mR
√

r2
M − r2

1

∣

∣

∣

∣

∣

∣

=
2πn

mR

[

A

|mRω − AB1|
− ǫB1

r2
M

2

]

,

(B.16)

where ǫ ≡ sign(mRω − AB1). The formula (B.16) together with (B.9) gives

κ2m2R2

(mRω − AB1)2
= r2

M +
A2

(mRω − AB1)2
= r2

M +

(

mR

n
+ ǫ

B1r
2
M

2

)2

, (B.17)

and therefore

E =
n

α′

√

r2
M +

(

mR

n
+ ǫ

B1r2
M

2

)2

. (B.18)
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Finally, one can express r2
M in terms of the angular momentum J1:

J1 =
1

2π

∫

dσ
∂L

∂ω
=

1

2πα′

∫

dσ

(

−ω r2
1

1 + B2
1r2

1

√

(dr1/dσ)2 + g

f
+

B1mRr2
1

1 + B2
1r2

1

)

(B.19)

=
4n

2πα′|mRω − AB1|

∫ rM

0
dr1

−ωr2
1mR+B1r

2
1

(

A−B1r
2
1(mRω−AB1)

)

(1 + B2
1r2

1)
√

r2
M − r2

1

= −ǫ
n

2α′ r
2
M .

Thus

α′E2 = 2n|J1| + α′
(

mR

α′ − B1J1

)2

, (B.20)

in agreement with (B.3).
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